
DOI 10.1140/epja/i2006-10061-5

Eur. Phys. J. A 28, 259–263 (2006) THE EUROPEAN

PHYSICAL JOURNAL A

Letter

Inelastic form factors to alpha-particle condensate states in 12C
and 16O: What can we learn?

Y. Funaki1,a, A. Tohsaki2, H. Horiuchi2, P. Schuck3, and G. Röpke4
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Abstract. In order to discuss the spatial extention of the 0+
2 -state of 12C (Hoyle state), we analyze the

inelastic form factor of electron scattering to the Hoyle state, which our 3α-condensate wave function repro-
duces very well like previous 3α RGM/GCM models. The analysis is made by varying the size of the Hoyle
state artificially. As a result, we find that only the maximum value of the form factor sensitively depends
on its size, while the positions of maximum and minimum are almost unchanged. This size dependence is
found to come from a characteristic feature of the transition density from the ground state to the Hoyle
state. We further show the theoretical predictions of the inelastic form factor to the 2+

2 -state of
12C, which

was recently observed above the Hoyle state, and of the inelastic form factor to the calculated 0+
3 -state of

16O, which was conjectured to correspond to the 4α condensed state in previous theoretical work by the
present authors.

PACS. 25.55.Ci Elastic and inelastic scattering – 03.75.Nt Other Bose-Einstein condensation phenomena
– 21.60.Gx Cluster models – 27.20.+n 6 ≤ A ≤ 19

It is well known that in lighter nuclei nuclear clusters,
for instance α-particles, play a very important role. From
the shell model point of view, one of the most mysteri-
ous states in light nuclei is the 0+

2 -state of 7.65MeV in
12C. It is known as the Hoyle state because of its impor-
tance in astrophysics [1]. On the other hand, this state has
been explained with a microscopic three-alpha RGM wave
function by Kamimura et al. [2] and Uegaki et al. [3]. More
recently, we came to the same result with a two-parameter
trial wave function which shows the aspect of the Hoyle
state as a loosely bound condensate of α-particles with a
volume 3 to 4 times the one of the ground state of 12C [4,
5]. Since we have shown that our wave function has al-
most 100% overlap with the one of ref. [2], it comes as no
surprise that we also reproduce the inelastic form factor
0+
1 → 0+

2 of ref. [2], which is in agreement with experi-
ment. The significance of this finding will be strongly in-
creased should there be an important dependence of the
inelastic form factor on the size of the Hoyle state. One
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of the objectives of this short communication is precisely
the study of this size dependence of the form factor. The
other is that we will make predictions for two other inelas-
tic form factors: (0+

1 → 2+
2 ) in 12C and 0+

1 → predicted
α-condensate state in 16O.

The form factor is obtained by performing the Fourier
transformation of the transition density as follows:
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Here a2

p = 0.43 fm2 is taken as the finite proton size,
which is the same as adopted in ref. [2] and jJ(qr) is
the J-th order spherical Bessel function. The transition
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Table 1. Numerical values of elastic (upper row) and inelastic (lower row) form factors in 12C.

q [fm−1] 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

|F (q)
0+

1
→0+

1

|(×10−1) 9.4 7.7 5.5 3.3 1.6 0.56 0.030 0.15 0.16 0.11 0.065 0.033

|F (q)
0+

1
→0+

2

|(×10−2) 0.98 3.3 5.2 5.5 4.3 2.5 0.96 0.069 0.27 0.29 0.20 0.11
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Fig. 1. (Color online) (a) experimental values of the elastic
form factor in 12C are compared with our values obtained by
solving the Hill-Wheeler equation, eq. (3), for ΨJ=0

λ=1 . The result
given in ref. [2] using the resonating group method (RGM)
is also shown. (b) Experimental values of the inelastic form
factor in 12C to the Hoyle state are compared with our values
obtained by using the Hoyle state wave function ΨJ=0

λ=2 and
those given in ref. [2] (RGM). The experimental values are
taken from ref. [6].

where the ground and Hoyle states can be obtained by
solving the following Hill-Wheeler equation:
∑

β′

〈
Φ̂N,J=0

3α (β)
∣∣(H − E)

∣∣Φ̂N,J=0
3α (β′)

〉
fJ=0
λ (β′)=0, (3)

ΨJ=0
λ =

∑

β

fJ=0
λ (β)Φ̂N,J=0

3α (β). (4)

We here use the same notation for the alpha-condensate

wave function, Φ̂N,J=0
3α (β) as was done in ref. [5]. The

Hamiltonian H is the same as used in refs. [5,2]. The
ground and Hoyle states correspond to the cases of λ = 1
and λ = 2 in eq. (4), respectively. Our results are shown in
fig. 1 and we give our numerical values in table 1. Reflect-
ing the fact that our wave functions of the ground state
and the 0+

2 -state are almost equivalent to those given in
ref. [2] using the resonating group method (RGM), our
elastic and inelastic (0+

1 → 0+
2 ) form factors almost com-

pletely agree with those given in ref. [2]. In fig. 2, we pre-
dict the inelastic form factor to the 2+

2 -state which is ob-
tained in refs. [7,8] by using the 3α-condensate wave func-
tions. This state was recently observed at 2.6 ± 0.3MeV
above the three-alpha threshold with the width of 1.0 ±
0.3MeV [9], though the exsistence of this state has been
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Fig. 2. (a) Theoretical prediction of inelastic form factor to
the 2+

2 -state of
12C using the wave function of [7]. (b) The form

factor shown in (a) is plotted as a function of q in linear scale
for the ordinate.

suggested for a long time from the theoretical point of
view [10]. Recently, the present authors carefully inves-
tigated this broad resonance state [7] using the ACCC
method, which is known as a powerful method for the
correct treatment of broad states beyond the bound-state
approximation. As a result of the investigation, the 2+

2 -
state was shown to be intimately related to the 0+

2 -state
which is interpreted as the 3α Bose condensate state.

We now make a study of the sensitivity of the inelastic
form factor with respect to some theoretical ingredients
of our theory. A quantity of prime interest is the spatial
extention of the Hoyle state which is predicted from our
studies to have a volume 3 to 4 times as large as the one
of the ground state of 12C. We therefore repeated the cal-
culation of the inelastic form factor in varying the size pa-
rameter of the Hoyle state. The calculation can be done as
shown in ref. [5] by adopting as the Hoyle state the wave

function, Ψ⊥(β) ≡ P̂⊥Φ̂
N,J=0
3α (β), where P̂⊥ is defined as

the projection operator onto the orthogonal space to the
ground state:

P̂⊥ ≡ 1− |ΨJ=0
λ=1 〉〈Ψ

J=0
λ=1 |. (5)

Here the parameter β corresponds to the spatial ex-
tention of the alpha condensate. In fig. 3, the form factors
from the ground state to the Hoyle state calculated at
several β = (βx, βy, βz) values are shown. Short-hand no-
tations β = βx = βy = βz and β1 := (βx = βy, βz) =
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Fig. 3. (Color online) (a) The inelastic form factors to the
Hoyle state are plotted as a function of q2. The wave function
Ψ⊥(β) is adopted as the Hoyle state, the size of which is arti-
ficially changed by varying the values of the parameter β. β is
defined as β ≡ βx = βy = βz and β1 denotes (βx = βy, βz) =
(5.27 fm, 1.37 fm) [11]. The result using the wave functions of
ground and Hoyle states which are obtained by solving the
Hill-Wheeler equation is denoted by HW. (b) The form factors
shown in (a) are replotted as a function of q in linear scale
for the ordinate. The r.m.s. radii corresponding to Ψ⊥(β) are
shown in parenthesis. Units of all numbers are in fm.
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Fig. 4. The ratio of the value of maximum height, the-
ory versus experiment, for the inelastic form factor, i.e.

max |F (q)|2/max |F (q)|2exp, is plotted as a function of δ, which
is defined as δ = (R − R0)/R0. R and R0 are the r.m.s. radii
corresponding to Ψ⊥(β = βx = βy = βz) and Ψ⊥(β1), respec-
tively. Here R0 = 3.78 fm. The unit of β is in fm.

(5.27 fm, 1.37 fm) [11] are used here and in the following.
The corresponding r.m.s. radii are shown in parenthesis.
We see that the overall structure of the form factor is not
very much affected by artificially changing the radius of
the Hoyle state, i.e., for instance, the position of the mini-
mum is only changed in very slight proportions. However,
we can see that the amplitude decreases as the r.m.s. ra-
dius of the 0+

2 -state increases. In order to see how sen-
sitively the height of the first maximum depends on the
r.m.s. radius of the 0+

2 -state, we plot in fig. 4 the varia-
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Fig. 5. (Color online) Transition densities defined in eq. (2)

multiplied by r2, i.e. r2ρ
(0)
0201

(r), corresponding to wave func-
tions Ψ⊥(β) with different β(= βx = βy = βz) values. β1 is
given by (βx = βy, βz) = (5.27 fm, 1.37 fm) [11]. The r.m.s.
radii corresponding to Ψ⊥(β) are shown in parenthesis. Units
of all numbers are in fm.

tion of this height with respect to the size of the Hoyle
state and we see that this height changes strongly when
the r.m.s. radius of the 0+

2 -state is changed. For example,
it is seen from fig. 4 that an increase of 20% of the r.m.s.
radius of the Hoyle state reduces the maximum of the form
factor by 50%! It is therefore allowed to say that the mea-
surement of the inelastic form factor of α-particle conden-
sate states allows via our model wave function to deduce

the radius of such a state. We should note that the wave
function of the 0+

2 -state ΨJ=0
λ=2 can be described rather

well by Ψ⊥(β) as far as reasonable β values are adopted.
The squared overlap between ΨJ=0

λ=2 and Ψ⊥(β) amounts to
99.2% at β = β1. Due to this almost complete equivalence
between both wave functions, ΨJ=0

λ=2 and Ψ⊥(β1), we un-
derstand that the corresponding inelastic form factors ob-
tained by using both wave functions, i.e. denoted by HW
and β1 in fig. 3, almost completely agree with one another.
As for the other choices of β, Ψ⊥(β) also has a reasonably
large amount of squared overlap with ΨJ=0

λ=2 , i.e. 64.4%,
90.1%, and 81.8% at β = 2.69 fm, 3.76 fm, and 5.27 fm, re-
spectively. It should be emphasized that the fact that the
wave function Ψ⊥(β), which is parametrized by β, is more
or less a good approximation of the 0+

2 -state guarantees
the validity of the above discussion of size dependence.

We can analyze the reason for these features of the
form factor in the following simple way. In fig. 5 we show

the transition density r2ρ
(0)
0201

(r) for different values of β.

Due to the orthogonality between ΨJ=0
λ=1 and P̂⊥Φ̂

N,J=0
3α (β)

one has the relation
∫
∞

0
r2ρ

(0)
0201

(r)dr = 0. We note that

the position of the node of r2ρ
(0)
0201

(r) at r ≈ 2.5 fm and the
point where this transition density drops approximately to
zero, i.e. at r ≈ 6.0 fm, do not depend on the various val-
ues of β. Also the feature of an approximate odd function
around the nodal point holds for all β-values. It clearly
can be concluded that one can approximately write

ρ
(0)
0201

(r) ≈ f(β)ρ̃
(0)
0201

(r), (6)
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Fig. 6. (a) Inelastic form factor in 16O to the 4α-condensate
state as obtained from the wave function corresponding to the
third eigen-energy state in ref. [4]. (b) The form factor shown in
(a) is plotted as a function of q in linear scale for the ordinate.

where f(β) ≥ 0 is independent of r and a decreasing func-

tion of β, whereas ρ̃
(0)
0201

(r) is independent of β. This means
that the form factor F (q) just changes amplitude but not
shape when the size of the Hoyle state is varied. This
analysis is completely consistent with the features seen
in fig. 3. Considering a simple situation of the wave func-
tion having a uniform density of spherical shape with the
r.m.s. radius R, one can understand this size dependence
as coming from the normalization factor of the wave func-
tion R−3/2, which corresponds to f(β) in eq. (6). In fact,
the smooth curve shown in fig. 4 turns out to be close to
(R/R0)

−3 = (1 + δ)−3, which is just the squared ratio of
the volumes of the states with the r.m.s. radii, R and R0,
respectively.

Concluding this point on the spatial extension of the
Hoyle state we can say that the reproduction of the experi-
mental data of the inelastic form factor is highly predictive
and adds further confidence to the fact that the 0+

2 -state
in 12C has a very dilute structure with triple to quadruple
volume of the 12C ground state.

On these grounds we also want to make a prediction of
the inelastic form factor to the α-condensate state in 16O.
In fig. 6 we show this form factor calculated with the α-
particle condensate wave function for 16O determined pre-
viously [4]. This latter state is actually the 3rd 0+-state of
our calculation, whose energy is at E0+

3

= 14.1MeV. We

see that the inelastic form factor for 16O resembles very
much in its structure the one of 12C. The positions of
minimum and maximum are almost unchanged, while the
height of the first maximum is relatively suppressed com-
pared to the case of 12C. A candidate of the 4α-condensate
state may have been observed at 13.5MeV with an al-
pha decay width of 0.8MeV [12]. This new state is the
5th 0+-state experimentally, corresponding to the 3rd 0+-
state of our calculation. An argument that in 16O the

α-condensate state is around 13.5MeV could go as fol-
lows: It is well known that the second 0+-state in 16O
at 6.06MeV has a structure of an α-particle orbiting in
an S-wave around a 12C core [10,13,14]. Exciting this
12C core to the Hoyle state we find the excitation energy
7.65MeV + 6.06MeV = 13.71MeV. Of course, this close
agreement may be a coincidence and more experimental
evidences are needed.

The experimental determination of the corresponding
form factor would be highly welcome and an eventual
agreement with our calculated result, we think, a clear
indication of the dilute α-particle structure of the corre-
sponding 0+-state in 16O.

In conclusion we showed that the reproduction of the
experimental inelastic form factor 0+

1 → 0+
2 of 12C from

our and Kamimura et al. wave functions is highly non-
trivial due to the high sensitivity on the spatial exten-
sion of the Hoyle state. Together with the reproduction
of other experimental data like for instance the transition
probability [4,15], we believe that the almost ideal Bose
condensate nature of the Hoyle state is now firmly es-
tablished. We also made predictions for the inelastic form
factor to the 2+

2 -state in
12C which we interpreted in [7] as

a quadrupole particle-hole excitation of the Hoyle state. A
prediction of the form factor 0+

1 → α condensate state in
16O is also presented and it is argued that an experimental
confirmation of this form factor undoubtedly would reveal
the condensate character of the corresponding state.
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